Unified improvements in estimation of a normal covariance matrix in high and low dimensions

نویسندگان

  • Hisayuki Tsukuma
  • Tatsuya Kubokawa
چکیده

The problem of estimating a covariance matrix in multivariate linear regression models is addressed in a decision-theoretic framework. Although a standard loss function is the Stein loss, it is not available in the case of a high dimension. In this paper, a new type of a quadratic loss function, called the intrinsic loss, is suggested, and unified dominance results are derived under the loss, irrespective of order of the dimension, the sample size and the rank of the regression coefficients matrix. Especially, using the Stein-Haff identity, we develop a key inequality which is useful for constructing a truncated and improved estimator based on the information contained in the sample means or the ordinary least squares estimator of the regression coefficients. AMS 2010 subject classifications: Primary 62F11, 62J12, Secondary 62C15, 62C20.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Local and Non-Local Methods in Covariance Matrix Estimation by Using Multi-baseline SAR Interferometry and Height Extraction for Principal Components with Maximum Likelihood Approach

By today, the technology of synthetic aperture radar (SAR) interferometry (InSAR) has been largely exploited in digital elevation model (DEM) generation and deformation mapping. Conventional InSAR technique exploits two SAR images acquired from slightly different angles, in which the information of elevation and deformation can be captured through processing of the phase difference of the image...

متن کامل

Covariance Estimation: The GLM and Regularization Perspectives

Finding an unconstrained and statistically interpretable reparameterization of a covariance matrix is still an open problem in statistics. Its solution is of central importance in covariance estimation, particularly in the recent high-dimensional data environment where enforcing the positive-definiteness constraint could be computationally expensive. We provide a survey of the progress made in ...

متن کامل

جهت یابی چند گوینده با استفاده از روش WCSSDOA

In this paper we propose the spatial sparsity based WCSSDOA method for multi speakers' Direction of arrival estimation. In the proposed method the sparse modeling is done based on the sensor signals' correlation matrix, which leads to low computational complexity. In this method the SVD decomposition of the noise covariance matrix is proposed to reach the free noise sparse model, which leads to...

متن کامل

Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions

Covariance matrix estimation and principal component analysis (PCA) are two cornerstones of multivariate analysis. Classic textbook solutions perform poorly when the dimension of the data is of a magnitude similar to the sample size, or even larger. In such settings, there is a common remedy for both statistical problems: nonlinear shrinkage of the eigenvalues of the sample covariance matrix. T...

متن کامل

Fault Type Estimation in Power Systems

This paper presents a novel approach for fault type estimation in power systems. The Fault type estimation is the first step to estimate instantaneous voltage, voltage sag magnitude and duration in a three-phase system at fault duration. The approach is based on time-domain state estimation where redundant measurements are available. The current based model allows a linear mapping between the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2016